You are currently viewing AI brain implant developed in Australia to help people with paralysis to control assistive technology
AI brain implant developed in Australia to help people with paralysis to control assistive technology

AI brain implant developed in Australia to help people with paralysis to control assistive technology

SYDNEY: A device, developed in Australia that uses artificially intelligent (AI) software to help people suffering from severe conditions of paralysis control assistive technology, has been granted approval for a world-first human trial on Monday.

Set to take place at the Royal Melbourne Hospital, the advanced paperclip-sized implant called the Stentrode, will be placed inside the participants motor cortex — an area of the brain which controls movement.

With five patients cleared to take part in the trial, it’s hoped the implant will be able to pick up signals in the brain and transmit their communications to a computer.

“If this trial can successfully provide a brain-to-computer interface, it would allow people with these kinds of injuries and diseases to communicate — this would be amazing,” principal investigator Professor Peter Mitchell from the Royal Melbourne Hospital said.

“In particular, motor-neuron disease sufferers, as well as other patients with severe paralysis, may see some benefits such as being able to control a mouse or keyboard through the use of this device. This would give people back a small amount of independence.”

The creator of the device, Associate Professor Thomas Oxley, who is also the chief executive officer of the trial’s funder Synchron, said the technology works by recording brain signals via the implant which are then decoded by AI technology and transmitted to a computer.

“These signals could be used by the individuals to control assistive technology e.g. personal computer, text generation, smart environment, mobility assist devices, that help with daily life, just by thinking and directly controlling special software,” Oxley explained.

“This could help the development of more user-friendly biotechnology for patients with neurological conditions.”

“It may also help to better understand how the human brain works in general,” Oxley added.

Trials are expected to begin sometime in mid-2019.

 

 

 

app

M M Alam

M. M. Alam is a Pakistan-based working journalist since 1981. Karachi University faculty gold medalist Alam began his career four decades ago by writing for Dawn, Pakistan’s highest circulating English daily. He has worked for region’s leading publications, global aviation periodicals including Rotors (of USA) and vetted New York Times as permanent employee of daily Express Tribune. Alam regularly covers international aviation and defense-related events including Salon Du Bourget (France), Farnborough (United Kingdom), Dubai (UAE). Alam has reported thousands of events and interviewed hundreds of people in Pakistan, UAE, EU, UK and USA. Being Francophone Alam also coordinates with a number of French publications.